Examining the Effects of Short-Rotation Pine for Bioenergy on Water Quality and Quantity using a Watershed-Scale Experiment

CBES Forum June 21, 2012 Natalie Griffiths and Matt Langholtz

Bioenergy Production

- Growing demand for bioenergy due to issues of energy security and climate change

- Variety of feedstocks (e.g., corn, switchgrass, pine) and types of bioenergy (e.g., bioethanol, biodiesel, biomass)

- All aspects of the supply chain (field to consumer) are being assessed
- Sustainability is an important goal in developing bioenergy technologies
- Need to evaluate the environmental sustainability of these practices

Short-Rotation Woody Biomass Sustainability

- Southeastern US may be a dominant source of pine for bioenergy (e.g., lignocellulose, biomass)

- Practice involves achieving high yields with short rotation (10-12 years) via fertilizer and herbicide applications

- Environmental sustainability (water quality, quantity) needs to be evaluated at the watershed scale

- Collaborative project with U. of Georgia, Oregon State U., and the US Forest Service at Savannah River

Project Goal and Outcomes

Goal:

- Use watershed-scale experiments along with a distributed catchment modeling approach to evaluate the environmental sustainability (water quality and quantity) of intensive short-rotation pine practices for bioenergy in the Southeastern US.

Outcomes:

- Provide watershed and operational-scale data on woody biomass production for bioenergy

- Determine baselines and targets for water quality and quantity in relation to current Best Management Practices (BMP)

- Modeling effort will expand and generalize results to the Coastal Plains region to estimate hydrological and water quality effects of shortrotation pine in areas with different topography, soils, and vegetation

Watershed-Scale Experimental Design

- BACI design: 1 ref. (R), 2 treatment (B, C) watersheds, currently mixed pine/deciduous forests at Savannah River Site, SC

- Intensive practices planned on 40+% of watersheds B, C and will follow SC forestry BMPs

C (117 ha) Jut Clear **R (45 ha)** roposed **B (169 ha)** Harvested areas in yellow

Timeline:

- 2009-2011: determine baseline hydrology and water quality
- 2012: harvest extant forest
- 2013: plant loblolly pine
- 2014-2018: monitor hydrology and water quality until crown closure
- Hydrologic measurements will inform watershed behaviour and will be used to develop hillslopeand watershed-scale hydrologic models
- Model development will occur in parallel throughout the study

Silviculture Treatment Plan

- 2 watersheds will each receive one integrated silviculture treatment

Silviculture Schedule:

- Harvest of 40%+ of extant forest, completed May 2012
- Chemical and mechanical site preparation, summer-fall 2012
- Plant elite genetic loblolly pine in Dec 2012-Feb 2013
- Banded application of **herbicide** in March 2013 and 2014 for herbaceous control
- Fertilization of planting rows with N and P in May-June 2013, 2014, 2016, 2018, 2022

Silviculture will follow South Carolina BMPs

- Simplified Forestry Best Management Practices (BMPs):
- 1. Minimize bare ground coverage and soil compaction
- 2. Separate bare ground from surface waters
- 3. Separate fertilizer/pesticide application from surface waters
- 4. Inhibit hydraulic connections between bare ground and surface waters
- 5. Provide a forested buffer around streams
- 6. Provide stable stream crossings for roads

Soil-Vegetation Nitrogen Cycling Study *Lead: Kaczmarek*

(USFS)

Objectives:

- Quantify soil-vegetation nitrogen budget during pine development
	- N mineralization, N leaching, N use efficiency
- Determine pine nutrient uptake and productivity under changing resource availability using a plot-scale study
	- Study design: 5 treatments, 4 reps per watershed
	- Watershed-level treatment (TRT4) = highest level of management
	- TRT1-3 = less intensive
	- TRT5 = higher density trees

Watershed Characterization *Lead: Jackson (UGA)*

- Instrumented hillslopes and streams in three watersheds
- Installations include:
	- 3 rain gauges, 10 throughfall collectors (precip. water)
	- 104 maximum rise piezometers (soil water dynamics)
	- 9 nests of recording piezometers (soil/groundwater dynamics)
	- 9 lysimeter nests (soil water sampling)
	- 20 soil moisture nests (soil moisture)
	- 15 deep groundwater wells (groundwater dynamics/sampling)
	- 3 interflow interception trenches (soil water flow and sampling)
	- 3 flumes, one at outlet of each watershed (stream flow)
	- 6 automated stream samplers (stream water sampling)
- Hydrologic data will characterize flow behavior in watersheds and parameterize the hillslope and watershed models

Watershed Characterization *Lead: Jackson (UGA)*

Interflow Trench

Trench Outflow

X

Stream valley in Watershed B. Each watershed includes an intermittent stream and long, flat valleys with indistinct channels characteristic of the Southeastern Coastal Plain.

Watershed Hydrology: Hillslope *Lead: Jackson (UGA)*

- Topsoils exhibit high hydraulic conductivities (water flow)
- Low conductivities in clay
- Clay layer should impede infiltration, keep water in rooting layer, and cause perching during rainstorms

Watershed Hydrology: Hillslope *Lead: Jackson (UGA)*

- Formation of perched zones above clay layer is common, but large spatial and temporal variation in perching

- Water flow through soils/clay (i.e., trench flows) only occurs with

large storms on wet soils

- Lateral macropore (i.e., old root paths, animal burrows) flow has not been observed

- Overland flow over forest soils has not been observed

- Only weak connections between perching events and stream flow response

Watershed Hydrology: Groundwater *Lead: Jackson (UGA)*

- Deep wells exhibit seasonal variation with little storm responsiveness, but wells near stream valley show more dynamic behaviour

- Seasonal groundwater dynamics appear to control when stream flow begins and ends

- Models require inclusion of groundwater dynamics to accurately capture stream flow

Watershed Hydrology: Stream Flow *Lead: Jackson (UGA)*

- Stream flow seasonality is similar, but peak stream flow and flow durations differ among the 3 watersheds

- Watershed R: flow fairly stable
- Watersheds B and C: 'flashier' flow
- All 3 streams have been dry since May 2011
	- 2010 and 2011 were 3rd & 4th driest years on record
	- 2011 and 2010 were 1st & 3rd hottest summers on record

- Hydrologic data are needed to validate the models that predict hillslope and watershed-scale hydrology

Small-Scale Hillslope Modeling *Lead: McDonnell (OSU)*

- To better understand the contribution of interflow to stream flow generation in low-relief landscapes
- - Hillslope model based on topography, saturated hydraulic conductivities, and moisture release curves at Watershed R

- Initial simulated flow modeled on hourly climate records in 2009 (rain, ET)

- Good agreement between modeled and predicted interflow

Watershed Modeling *Lead: McDonnell (OSU)*

- To develop and evaluate a hydrologic model for the reference watershed (R)

- Simulated and observed stream flows for 2009-2010 show good agreement

- Streamflow only occurs during wet season

- Seasonal groundwater dynamics control streamflow duration

Further Model Development *Lead: McDonnell (OSU)*

- Hillslope- and watershed-scale modeling complete for Watershed R
- Developing/adapting models to Watersheds B and C
- Will compare the model response in the treatment (B,C) and reference (R) watersheds over time
	- will evaluate the change in runoff behavior, evapotranspiration, and groundwater dynamics following silviculture practices
	- one of the best ways of testing the predictive capability of the OSU models
- Expand model to the Coastal Plains region to areas with different topography, soils, and vegetation

Water Quality: Sampling Design *Leads: Langholtz &*

Griffiths (ORNL)

Sampling locations:

- Intermittent and ephemeral streams
- Throughfall collectors
- Riparian groundwater wells
- Deep groundwater wells
- Tension lysimeters (soil water)
- Interflow interception trenches (flowing soil water)

Measurements:

- Nutrients (N, P), dissolved organic carbon (DOC)
- Herbicides (imazapyr,
- sulfometuron methyl, glyphosate)
- Isotopic tracers in nitrate $(^{15}N, ^{18}O)$ as an indicator of nitrogen cycling in the watersheds

- N and P are biologically-important nutrients, and high concentrations can impair water quality
- No water quality standards for streams/rivers in SC
	- Standards for lakes: $TN < 1,500 \mu g/L$; TP < 90 $\mu g/L$
	- Human health: Nitrate < 10,000 µg/L
- N and P concentrations low in these streams
	- Relatively un-impacted systems, 1950's agriculture
	- All herbicides below detection in streams and groundwater

Baseline Dissolved Nutrients

$\begin{bmatrix}\n\frac{1}{\sqrt{2}} & 600 \\
\frac{1}{\sqrt{2}} & 600 \\
\frac{1}{\sqrt{2}} & 400 \\
\frac{1}{\sqrt{2}} & 400 \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\$ 0 200 400 600 R watershed B watershed C watershed **C watershed R** watershed Ammonium (NH₄⁺-
n=31 per box plot $-N$) Nitrate (NO₃ $-$ N) \overline{a} a_0 , Soluble reactive phosphorus (SRP) n=31 per box plot $\overrightarrow{0}$ \leq | n=31 per box plot $\frac{3}{2}$ വെ $\frac{1}{2}$ B watershed C watershed Nutrient concentration { $9/$ L) Ω 10 20 30 40 n=31 per box plot *Griffiths (ORNL)*

Dissolved organic carbon (DOC) **The Stream N, P, DOC concentrations vary** \mathbf{z}_1 per box plot n \mathbf{z}_2 among watersheds

Leads: Langholtz &

- Higher NH₄⁺ and DOC in Watershed R suggests anoxic conditions may influence chemistry (little nitrification; NH_4 \bigstar NO₃)
- Higher $NO₃$ in Watershed B may reflect shallower flowpaths moving nitrate into streams (nitrate = 'leaky')

- Greatest nutrient fluxes during periods of high flow, but nutrients do not consistently respond to storm events

- Linkage between hydrology and water quality (i.e., solute transport) important in understanding fate of nutrients from watersheds

Baseline Watershed Nitrate Cycling

- Stable isotopes of nitrate $(^{15}N$ and ^{18}O) can be used to trace nitrate sources to ecosystems

- In these watersheds, stable isotopes of nitrate suggest that riparian groundwater may be the source of nitrate for stream water 70

- High δ^{15} N values likely reflect denitrification occurring in the watershed $(NO₃ \rightarrow N₂)$, anoxic, high carbon) riparian groundwater may be the
- High $\delta^{15}N$ values likely reflect d
watershed $(NO_3 \rightarrow N_2)$, anoxic, h $M_{\rm{star}}$ and $M_{\rm{star}}$ and $M_{\rm{star}}$ Is

Future Water Quality Work

- 2 years of baseline water chemistry has been collected and analyzed - ~1.5 years of stream water chemistry due to drought conditions
- Water samples collected during harvest and will continue to be collected until crown closure (~5 years after planting seedlings)
- Stream water nutrient concentrations and fluxes will help determine targets for water quality
- Watershed budgets (input, output) will help inform watershed-scale impacts

Hillslope Irrigation Experiment

- How does rainfall and associated nutrients move through the soil?
- How much rainfall is needed to initiate interflow?
- What is the conductivity of the clay layer at the plot scale?
- How long does perching in the clay layer last after a large rain?
- What is the fate of N and P in rainwater?
- Irrigation Experiment Methods:
- Irrigated 12x16.5 m hillslope for ~50 hours
- Applied 21,283 gallons of water
- Added dyes (flow velocity), tracers (new/old water mixing), and nutrients

Hillslope Irrigation Experiment

- Flow appeared in trench after 12 h (13 cm irrigation), as predicted from hillslope-scale model

- Estimated conductivity of argillic = 0.3 cm/h (similar to mean K_{sat} of smaller-scale measurements)

- Tracers show pulse of new water initially, then old water, suggesting large storage zone in hillslope

- Awaiting nutrient analyses to examine cycling of N and P in the hillslope

Project Summary and Future Work

- Collaborative project that combines watershed-scale experimental and modeling approaches to determine the environmental sustainability of short-rotation pine for bioenergy in S.E. US.

- 2 years of baseline water quality and hydrologic monitoring of 3 watersheds is complete

- Harvest of ~40% of extant watersheds is complete, site preparation will begin this summer/fall, and planting loblolly seedlings in spring

- Hydrologic and water quality measurements will continue through crown closure (~2018) and model development will occur in parallel

Stay Tuned….