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Bioenergy Production

- Growing demand for bioenergy due
to issues of energy security and
climate change

- Variety of feedstocks (e.g., corn,
switchgrass, pine) and types of
bioenergy (e.g., bioethanol, biodiesel, LY,
biomass) e

- All aspects of the supply chain (field iy
to consumer) are being assessed
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- Sustainability is an important goal in
developing bioenergy technologies
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Short-Rotation Woody Biomass Sustainability

U.S. Timber Production by County (2007)

Board feet per hectare

- Southeastern US may be a dominant - e poeomiomess
source of pine for bioenergy (e.g.,
lignocellulose, biomass)

- Practice involves achieving high yields LAV i
with short rotation (10-12 years) via % | e
fertilizer and herbicide applications =~ sceuthemforestsors il :

- Environmental sustainability (water gj !
quality, quantity) needs to be ’
evaluated at the watershed scale

- Collaborative project with U. of
Georgia, Oregon State U., and the
US Forest Service at Savannah River
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Project Goal and Outcomes

Goal:

- Use watershed-scale experiments along with a distributed catchment
modeling approach to evaluate the environmental sustainability (water
qguality and quantity) of intensive short-rotation pine practices for
bioenergy in the Southeastern US.

Outcomes:
- Provide watershed and operational-scale data on woody biomass
production for bioenergy

- Determine baselines and targets for water quality and quantity in
relation to current Best Management Practices (BMP)

- Modeling effort will expand and generalize results to the Coastal Plains
region to estimate hydrological and water quality effects of short-
rotation pine in areas with different topography, soils, and vegetation




Watershed-Scale Experimental Design

- BACI design: 1 ref. (R), 2
treatment (B, C) watersheds,
currently mixed pine/deciduous
forests at Savannah River Site, SC

- Intensive practices planned on
40+% of watersheds B, C and will
follow SC forestry BMPs

Timeline:

- 2009-2011: determine baseline
hydrology and water quality

- 2012: harvest extant forest

- 2013: plant loblolly pine

- 2014-2018: monitor hydrology
and water quality until crown
closure
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Harvested areas in yellow

- Hydrologic measurements will
inform watershed behaviour and
will be used to develop hillslope-
and watershed-scale hydrologic
models

- Model development will occur in
parallel throughout the study




Silviculture Treatment Plan Lead: Blake (USFS)
- 2 watersheds will each receive one integrated silviculture treatment

Silviculture Schedule:
- Harvest of 40%+ of extant forest, completed May 2012
- Chemical and mechanical site preparation, summer-fall 2012
- Plant elite genetic loblolly pine in Dec 2012-Feb 2013
- Banded application of herbicide in March 2013 and 2014 for
herbaceous control
- Fertilization of planting rows with N and P in May-June 2013,
2014, 2016, 2018, 2022
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Silviculture will follow South Carolina BMPs

Simplified Forestry Best Management Practices (BMPs):

1.
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3.
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Minimize bare ground coverage and soil compaction

Separate bare ground from surface waters

Separate fertilizer/pesticide application from surface waters
Inhibit hydraulic connections between bare ground and surface
waters

Provide a forested buffer around streams

Provide stable stream crossings for roads




Soil-Vegetation Nitrogen Cycling Study

Objectives:

Lead: Kaczmarek
(USFS)

- Quantify soil-vegetation nitrogen budget during pine development

- N mineralization, N leaching, N use efficiency

- Determine pine nutrient uptake and productivity under changing
resource availability using a plot-scale study
- Study design: 5 treatments, 4 reps per watershed
- Watershed-level treatment (TRT4) = highest level of management

- TRT1-3 = less intensive
- TRT5 = higher density trees

TRT1

Elite genetics
No nutrients

No herbicides
Op. density

TRT2

Elite genetics
No nutrients
Op. herbicides
Op. density

TRT3

Elite genetics
1/2 nutrients
Op. herbicides

Op. density __

Experiment Site Equipment
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Watershed Characterization Lead: Jackson (UGA)

- Instrumented hillslopes and streams in three watersheds

- Installations include:
- 3 rain gauges, 10 throughfall collectors (precip. water)
- 104 maximum rise piezometers (soil water dynamics)
- 9 nests of recording piezometers (soil/groundwater dynamics)
- 9 lysimeter nests (soil water sampling)
- 20 soil moisture nests (soil moisture)
- 15 deep groundwater wells (groundwater dynamics/sampling)
- 3 interflow interception trenches (soil water flow and sampling)
- 3 flumes, one at outlet of each watershed (stream flow)
- 6 automated stream samplers (stream water sampling)

- Hydrologic data will characterize flow behavior in watersheds and
parameterize the hillslope and watershed models



Lead: Jackson (UGA)

Watershed Characeiain
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Stream valley in Watershed B. Each watershed i
stream and long, flat valleys with indistinct channels characteristic of

the Southeastern Coastal Plain.
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Watershed Hydrology: Hillslope

- Orange, sandy clay
loam & clay

- Topsoils exhibit high hydraulic
conductivities (water flow)

- Low conductivities in clay

Depth (cm)

Lead: Jackson (UGA)
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- Clay layer should impede infiltration,
keep water in rooting layer, and cause

perching during rainstorms




Watershed Hydrology: Hillslope Lead: Jackson (UGA)

- Formation of perched zones above clay layer is common, but large
spatial and temporal variation in perching

- Water flow through soils/clay (i.e., trench flows) only occurs with
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- Only weak connections between perching events and stream flow
response



Watershed Hydrology: Groundwater Lead: Jackson (UGA)

- Deep wells exhibit seasonal variation with little storm
responsiveness, but wells near stream valley show more dynamic
behaviour

- Seasonal groundwater ] m
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Watershed Hydrology: Stream Flow Lead: Jackson (UGA)

- Stream flow seasonality is similar, but peak stream flow and flow
durations differ among the 3 watersheds

Watershed R 10 Watershed B 10 Watershed C
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- Watershed R: flow fairly stable
- Watersheds B and C: ‘flashier’ flow

- All 3 streams have been dry since May 2011
- 2010 and 2011 were 3" & 4t driest years on record
- 2011 and 2010 were 1%t & 3" hottest summers on record

- Hydrologic data are needed to validate the models that predict
hillslope and watershed-scale hydrology



Small-Scale Hillslope Modeling

Lead: McDonnell (OSU)

- To better understand the contribution of interflow to stream flow
generation in low-relief landscapes

- Hillslope model based on
topography, saturated hydraulic
conductivities, and moisture
release curves at Watershed R

surface soil topography

subsurface (clay) topography

- Initial simulated flow modeled on hourly climate records in 2009

(rain, ET)

- Good agreement
between modeled
and predicted
interflow

trench discharge drain 3 + 4 combined [Ls™]
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Watershed Modeling

Lead: McDonnell (OSU)

- To develop and evaluate a hydrologic model for the reference

watershed (R)

- Simulated and
observed stream flows

for 2009-2010 show
good agreement

- Streamflow only
occurs during wet
season

- Seasonal
groundwater dynamics
control streamflow
duration
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Further Model Development Lead: McDonnel] (OSU)
- Hillslope- and watershed-scale modeling complete for Watershed R

- Developing/adapting models to Watersheds B and C

- Will compare the model response in the treatment (B,C) and
reference (R) watersheds over time

- will evaluate the change in runoff behavior, evapotranspiration,
and groundwater dynamics following silviculture practices

- one of the best ways of testing the predictive capability of the
OSU models

- Expand model to the Coastal Plains region to areas with different
topography, soils, and vegetation



VL : : Leads: Langholtz &
Water Quality: Sampling Design arifithe (ORNL

Sampling locations: _
- Intermittent and ephemeral streams &=
- Throughfall collectors

- Riparian groundwater wells

- Deep groundwater wells

- Tension lysimeters (soil water)
- Interflow interception trenches
(flowing soil water)

Measurements:

- Nutrients (N, P), dissolved organic
carbon (DOC)

- Herbicides (imazapyr,
sulfometuron methyl, glyphosate)

- Isotopic tracers in nitrate (°N, 180)
as an indicator of nitrogen cycling in
the watersheds




Baseline Stream Water Quality Leads: Langholtz &
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- N and P are biologically-important nutrients, and high concentrations
can impair water quality

- No water quality standards for streams/rivers in SC
- Standards for lakes: TN < 1,500 pg/L; TP < 90 pg/L
- Human health: Nitrate < 10,000 pg/L

- N and P concentrations low in these streams
- Relatively un-impacted systems, 1950’s agriculture
- All herbicides below detection in streams and groundwater



Baseline Dissolved Nutrients
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Leads: Langholtz &
Griffiths (ORNL)

. Soluble reactive phosphorus (SRP)

n=31 per box plot
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- Stream N, P, DOC concentrations vary

among watersheds

- Higher NH,* and DOC in Watershed R
suggests anoxic conditions may influence
chemistry (little nitrification; NH, -> NO;)

- Higher NO;" in Watershed B may reflect
shallower flowpaths moving nitrate into
streams (nitrate = ‘leaky’)



Leads: Langholtz &

Baseline Nutrient Fluxes Griffiths (ORNL)
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- Greatest nutrient fluxes during periods of high flow, but nutrients do
not consistently respond to storm events

- Linkage between hydrology and water quality (i.e., solute transport)
important in understanding fate of nutrients from watersheds



Baseline Watershed Nitrate Cycling
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- Stable isotopes of nitrate (*>’N and *20) can be used to trace nitrate
sources to ecosystems

- In these watersheds, stable isotopes of nitrate suggest that
riparian groundwater may be the source of nitrate for stream water

- High 6*°N values likely reflect denitrification occurring in the
watershed (NO; = N,, anoxic, high carbon)



Future Water Quality Work

- 2 years of baseline water chemistry has been collected and analyzed
- ~1.5 years of stream water chemistry due to drought conditions

- Water samples collected during harvest and will continue to be
collected until crown closure (~5 years after planting seedlings)

- Stream water nutrient concentrations and fluxes will help determine
targets for water quality

- Watershed budgets (input, output) will help inform watershed-scale
impacts



Hillslope Irrigation Experiment

How does rainfall and associated nutrients move through the soil?
- How much rainfall is needed to

initiate interflow? o e \
- What |S the COﬂdUCtIVIty Of the Clay Tankl sl Tank2 Tank3 Tank4 ‘
l I

layer at the plot scale?

- How long does perching in the clay
layer last after a large rain?

- What is the fate of N and P in
rainwater?
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Irrigation Experiment Methods:

- Irrigated 12x16.5 m hillslope for
~50 hours

- Applied 21,283 gallons of water

- Added dyes (flow velocity), tracers
(new/old water mixing), and
nutrients
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Hillslope Irrigation Experiment fs
- Flow appeared in trench after 12 h i

(13 cm irrigation), as predicted from
hillslope-scale model

- Estimated conductivity of argillic =
0.3 cm/h (similar to mean K, of
smaller-scale measurements)

- Tracers show pulse of new water
initially, then old water, suggesting
large storage zone in hillslope

- Awaiting nutrient analyses to
examine cycling of N and P in the
hillslope



Project Summary and Future Work

- Collaborative project that combines watershed-scale experimental
and modeling approaches to determine the environmental
sustainability of short-rotation pine for bioenergy in S.E. US.

- 2 years of baseline water quality and hydrologic monitoring of 3
watersheds is complete

- Harvest of ~40% of extant P\
watersheds is complete, site ' "'
preparation will begin this
summer/fall, and planting
loblolly seedlings in spring
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- Hydrologic and water quality measurements will continue through
crown closure (~2018) and model development will occur in
parallel



Stay Tuned




